Peer Reviewed Publications

Google Scholar
  1. Exceptional hole transfer from CdSe quantum dots enabled by oxygen-deficient polyoxovanadate clusters,
    K. P. McClelland, A. A. Fertig, T. M. Tumiel, W. W. Brennessel, T. D. Krauss, and E. M. Matson
    2022 (submitted)
  2. Shewanella oneidensis MR-1 Respire CdSe Quantum Dots for Photocatalytic Hydrogen Evolution
    E. H. Edwards, J. Jelušić, K. P. McClelland, W. Chiang, S. Lampa-Pastirk, T. D. Krauss and K. L. Bren
    Proc. Natl. Acad. Sci., 2022 (submitted)
  3. A Quantum Dot Biomimetic for SARS-CoV-2 to Interrogate Dysregulation of the Neurovascular Unit Relevant to Brain Inflammation
    W. Chiang, A. Stout, F. Yanchik-Slade, H. Li, B. Nilsson, H. Gelbard, T.D. Krauss
    2022 (submitted)
  4. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Recombination
    J. K. Widness, D. G. Enny, K. S. McFarlane-Connelly, M. T. Miedenbauer, T. D. Krauss, and D. J. Weix
    J. Am. Chem. Soc., 2022, 144, 12229–12246. DOI: 10.1021/jacs.2c03235
    CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Recombination
  5. Synthetic Mechanisms in the Formation of SnTe Nanocrystals
    S.W. O'Neill and T.D. Krauss
    J. Am. Chem. Soc., 2022, 144, 6251-6260. DOI: 10.1021/jacs.1c11697
    Synthetic Mechanisms in the Formation of SnTe Nanocrystals
  6. Single-Walled Carbon Nanotube Dark Exciton Photoluminescence Dynamics
    T. M. Tumiel, M. Amin, and T.D. Krauss
    J. Phys. Chem. C, 2021, 125, 25022-25029. DOI: 10.1021/acs.jpcc.1c05818
    Single-Walled Carbon Nanotube Dark Exciton Photoluminescence Dynamics
  7. Molecular Polaritons Generated from Strong Coupling between CdSe Nanoplatelets and a Dielectric Optical Cavity
    L. Qiu, A. Mandal, O. Morshed, M. T. Meidenbauer, W. Girten, P. Huo, A. N. Vamivakas, and T.D. Krauss
    J. Phys. Chem. Lett., 2021, 12, 5030-5038. DOI: 10.1021/acs.jpclett.1c01104
    Molecular Polaritons Generated from Strong Coupling between CdSe Nanoplatelets and a Dielectric Optical Cavity
  8. Quantum Dots for Improved Single Molecule Localization Microscopy
    J. M. Urban, W. Chiang, J. W. Hammond, N. M. B. Cogan, A. Litzburg, R. Burke, H. A. Stern, H. A. Gelbard, B. L. Nilsson, and T. D. Krauss
    J. Phys. Chem. B, 2021, 125, 2566-2576. DOI: 10.1021/acs.jpcb.0c11545
    Quantum Dots for Improved Single Molecule Localization Microscopy
  9. Light-driven hydrogen production with CdSe quantum dots and a cobalt glutathione catalyst
    R. Burke, S. Chakraborty, K. P. McClelland, J. Jelušic, E. M. Matson, K. L. Bren, and T.D. Krauss
    Chem. Commun., 2021, 57, 2053-2056. DOI: 10.1039/D0CC07364D
    Light-driven hydrogen production with CdSe quantum dots and a cobalt glutathione catalyst
  10. Z. Hou, T. M. Tumiel, and T. D. Krauss, “Spatially Resolved Photoluminescence Brightening in Individual Single-Walled Carbon Nanotubes,” J. Appl. Phys. 129, 014305 (2021).
  11. R. Burke, K. L. Bren, and T.D. Krauss, “Semiconductor Nanocrystal Photocatalysis for the Production of Solar Fuels,” J. Chem. Phys. 154, 030901 (2021).
  12. A. Mandal, T. D. Krauss, and P. Huo, “Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics, J. Phys. Chem. B 124, 6321-6340 (2020).
  13. E. H. Edwards, A. A. Fertig, K. P. McClelland, M. T. Meidenbauer, S. Chakraborty,a T. D. Krauss, K.L. Bren, and E. M. Matson, “Enhancing the activity of photocatalytic hydrogen evolution from CdSe quantum dots with a polyoxovanadate cluster” Chem. Commun. 56, 8762-8765 (2020).
  14. J. Yin, N. M. B. Cogan, R. Burke, Z. Hou, K. L. Sowers, and T. D. Krauss, “Size Dependence of Photocatalytic Hydrogen Generation for CdTe Quantum Dots,” J. Chem. Phys. 151, 174707 (2019).
  15. A. R. Freyer, P. C. Sercel, Z. Hou, B. H. Savitzky, L. F. Kourkoutis, A. L. Efros, and T. D. Krauss, “Explaining the Unusual Photoluminescence of Semiconductor Nanocrystals Doped Via Cation Exchange,” Nano Lett. 19, 4797-4803 (2019).
  16. A. Preske, S.W. O’Neill, B. D. Swartz, J. Liu, O. V. Prezhdo, and T. D. Krauss, “Size-Programmed Synthesis of PbSe Quantum Dots via Secondary Phosphine Chalcogenides,” Chem. Mater 31, 8301-8307 (2019).
  17. R. Burke, N. M. B. Cogan, A. Oi, and T. D. Krauss, “Recovery of Active and Efficient Photocatalytic H2 production for CdSe Quantum Dots,” J. Phys. Chem. C, 122 14099-14106 (2018).
  18. A. R. Amori, Z. Hou, and T. D. Krauss, “Excitons in Single-Walled Carbon Nanotubes and their Dynamics,” Annu. Rev. Phys. Chem., 69, 3.1 – 3.19 (2018).
  19. A. R. Amori, J. E. Rossi, B. J. Landi, and T. D. Krauss, “Defects Enable Dark Exciton Photoluminescence in Single-Walled Carbon Nanotubes,” J. Phys. Chem. C 122, 3599-3607 (2018).
  20. H. Lv, C. Wang, G. Li R. Burke, T. D. Krauss, Y. Gao, and R. Eisenberg, “Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation,” Proc. Nat. Acad. Sci. USA 114, 11297-11302 (2017).
  21. Z. Hou and T. D. Krauss, “Photoluminescence Brightening of Isolated Single-Walled Carbon Nanotubes,” J. Phys. Chem. Lett. 8, 4954-4959 (2017).
  22. L. C. Frenette and T. D Krauss, “Uncovering Active Precursors in Colloidal CdSe Quantum Dot Synthesis,” Nature Comm., 8, 2082 (2017).
  23. J. A. Caputo, L. C. Frenette, N. Zhao, K. L. Sowers, T. D. Krauss, and D. J. Weix, “General and Efficient C-C Bond Forming Photoredox Catalysis With Semiconductor Quantum Dots,” J. Am. Chem. Soc. 39, 4250-4253 (2017).
  24. D. Waldron, R. Burke, A. Preske, T. D. Krauss, J. M. Zawodn, and M. C. Gupta, “Temperature dependent optical properties of lead selenide quantum dot polymer nanocomposites, “Appl. Opt. 56, 1982-1989 (2017).
  25. D. Waldron, A. Preske, J. M. Zawodny, T. D. Krauss and M. C. Gupta, “PbSe quantum dot based luminescence solar concentrators,” Nanotechnology, 28, 095205 (2017).
  26. G. A. Pilgrim, A. R. Amori, Z. Hou, F. Qiu, S. Lampa-Pastirk, and T. D. Krauss, “Carbon Nanotube Based Membrane for Light-Driven, Simultaneous Proton and Electron Transport,” ACS Energy Lett. 2, 129-133 (2017).
  27. L. Kubie, A. R. Amori, S. Chakraborty, K. L. Bren and T. D. Krauss, “Photoinduced Charge Separation in Single-Walled Carbon Nanotube/Protein Integrated Systems,” Nanoscale Horiz. 2, 163-166 (2017).
  28. A. R. Durney, L. C. Frenette, E. C. Hodvedt, T. D. Krauss, and H. Mukaibo, “Fabrication of Tapered Microtube Arrays and Quantum Dot Delivery to Microalgae,” ACS Appl. Mater. Interfaces, 8, 34198–34208 (2016).
  29. F. Qiu, Z. Han, J. J. Peterson, M. Y. Odoi, K. L. Sowers, and T. D. Krauss, “Photocatalytic Hydrogen Generation by CdSe/CdS Nanoparticles,” Nano Lett. 16, 5347-5352 (2016). DOI: 10.1021/acs.nanolett.6b01087
  30. T. Krauss, S. Lampa-Pastirk, C. Liu and F. Qiu, “Photons to fuels: ultrafast dynamics of semiconductor nanocrystals,” SPIE Newsroom, (2016). DOI: 10.1117/2.1201605.006467
  31. F. T. Rabouw, N. M. B. Cogan, A. C. Berends, W. van der Stam, D. Vanmaekelbergh, A. F. Koenderink, T. D. Krauss, and C. de M. Donega, “Non-blinking single-photon emitters in silica,” Sci. Rep. 6, 21187 (2016).
  32. K. L. Sowers, Z. Hou, J. J. Peterson, B. Swartz, S. Pal, O. Prezhdo, and T. D. Krauss, "Photophysical Properties of CdSe/CdS core/shell Quantum Dots with Tunable Surface Composition,” Chem. Phys. 471, 24-31 (2016).
  33. A. Preske, J. Liu, O. V. Prezhdo, and T. D. Krauss, “Large-Scale Programmable Synthesis of PbS Quantum Dots,” ChemPhysChem, 16, 681-686 (2016) DOI: 10.1002/cphc.201500909
  34. K. M. Goodfellow, C. Chakraborty, K. Sowers, P. Waduge, M. Wanunu, T. Krauss, K. Driscoll and A. N. Vamivakas “Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor” Appl. Phys. Lett, 108, 021101 (2016).
  35. L. J. Nogaj, J. A. Smyder, K. E. Leach, and T. D. Krauss " Bright Fraction of Single-Walled Carbon Nanotubes through Correlated Fluorescence and Topography Measurements," J. Phys. Chem. Lett. 6, 2816-2821 (2015).
  36. D. L. Waldron, A. Preske, J. M. Zawodny, T. D. Krauss and M. C. Gupta, “Lead selenide quantum dot polymer nanocomposites,” Nanotechnology, 26, 075705 (2015).
  37. C. Liu, F. Qiu, J. J. Peterson, and T. D. Krauss, “Aqueous Photogeneration of H2 with CdSe Nanocrystals and Nickel Catalysts: Electron Transfer Dynamics,” J. Phys. Chem. B, 119 7349–7357 (2015).
  38. C. Liu, J. J. Peterson, and T. D. Krauss “Uncovering Hot Hole Dynamics in CdSe Nanocrystals,” J. Phys. Chem. Lett. 5 3032–3036 (2014).
  39. J. A. Smyder, A. R. Amori, M. Y. Odoi, H. A. Stern, J. J. Peterson and T. D. Krauss, “The Influence of Continuous vs. Pulsed Laser Excitation on Single Quantum Dot Photophysics,” Phys. Chem. Chem. Phys. 16 25723-25728 (2014).
  40. S. Schäfer, N. M. Cogan, and T. D. Krauss, “Spectroscopic investigation of electrochemically charged individual (6,5) single walled carbon nanotubes,” Nano Lett. 14, 3138−3144 (2014).
  41. N. M. B. Cogan, C. J. Bowerman, L. J. Nogaj, B. L. Nilsson, and Todd D. Krauss “Selective Suspension of Single-Walled Carbon Nanotubes using β-Sheet Polypeptides” J. Phys. Chem. C 118, 5935-5944 (2014).
  42. G. A. Pilgrim, J. W. Leadbetter, F. Qiu, A. J. Siitonen, S. M. Pilgrim, and T. D. Krauss, “Electron Conductive and Proton Permeable Vertically Aligned Carbon Nanotube Membranes, Nano Lett. 14 1728-1733 (2014).
  43. K. L. Sowers, B.D. Swartz, and T. D. Krauss, “Chemical Mechanisms of Semiconductor Nanocrystal Synthesis,” Chem. Mater. 25 1351-1362 (2013).
  44. A. J. Lee, W. B. Asher, H. A. Stern, K. L. Bren, and T. D. Krauss, “Single-molecule analysis of cytochrome c folding by monitoring the lifetime of an attached fluorescent probe,” J. Phys. Chem. Lett. 4, 2727−2733 (2013).
  45. Z. Han, F. Qiu, R. Eisenberg, P. L. Holland, and T. D. Krauss, “Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst,” Science 338 1321-1324 (2012).
  46. H. H.-Y. Wei, C. M. Evans, B. D. Swartz, A. J. Neukirch, J. Young, O. V. Prezhdo, and T. D. Krauss, “Colloidal Semicondctor Quantum Dots with Tunable Surface Composition,” Nano Lett. 12, 4465-4471 (2012).
  47. R. Priefer, K. Sowers, T. D. Krauss, M. E. McGahan, and T. W. Smith, “Bis(trifluoromethyl)carbinol polynorbornene as a pseudo-polyelectrolyte in multilayered films,” Thin Solid Films, 520 (2012) 6170–6173 (2012).
  48. J. J. Peterson and T. D. Krauss, “Quantum Dots, a Charge for Blinking,” Nature Mater. 11, 14-16 (2012).
  49. J. A. Smyder and T. D. Krauss, “Coming attractions for semiconductor quantum dots,” Materials Today 14, 382-387 (2011).
  50. A. J. Lee, X. Wang, L. J. Carlson, J. A. Smyder, X. Tu, M. Zheng, and T. D. Krauss, "Bright Fluorescence from Individual Single-Walled Carbon Nanotubes," Nano Lett. 11, 1636-1640 (2011).
  51. H.-I Peng, T. D. Krauss, and B. L. Miller, "Aging Induced Ag Nanoparticle Rearrangement under Ambient Atmosphere and Consequences for Nanoparticle-Enhanced DNA Biosensing" Anal. Chem. 82, 8664-8670 (2010).
  52. C. M Evans, M. Evans, and T. D. Krauss, " Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation," J. Am. Chem. Soc. 132, 10973-10975 (2010).
  53. T. D. Krauss and J.J. Peterson, "Bright Future for Fluorescence Blinking in Semiconductor Nanocrystals," J. Phys. Chem. Lett. 1, 1377-1382 (2010).
  54. S. Wang, M. Khafizov, X. Tu, M. Zheng, and T. D. Krauss, "Multiple exciton generation in single-walled carbon nanotubes," Nano Lett. 10, 2381-2386 (2010).
  55. A. J. Lee, A. A. Ensign, T. D. Krauss, and K. L. Bren, "Zinc Porphyrin as a Donor for FRET in Zn(II) cytochrome c," J. Am. Chem. Soc. 132, 1752-1753 (2010).
  56. R. Priefer, P. N. Grenga, A. Mandrino, D. M. Raymond, K. E. Leach, T. D. Krauss, "Multilayering of a very weak polyelectrolyte (PVPh) with a strong polyelectrolyte (PDMAC) from aqueous media, " Surf. Sci. 604, 59-62 (2009).
  57. H.-I. Peng, C. M. Strohsahl, K. E. Leach, T. D. Krauss, and B. L. Miller, "Label-Free DNA Detection on Nanostructured Ag Surfaces," ACS Nano 3, 2265–2273 (2009).
  58. X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, Al. L. Efros, and T. D. Krauss, "Non-blinking Semiconductor Nanocrystals," Nature 459, 686-689 (2009). (retracted)
  59. T. D. Krauss, "Biosensors: Nanotubes Light up Cells," Nat. Nanotech. 4, 85-86 (2009). (Invited News and Views)
  60. S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, B. Zimmermanm T. D. Krauss, C. R. Stroud, Jr. and R. W. Boyd, "Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature single photon sources on demand, " J. Mod. Opt. 56, 167-174 (2009).
  61. K. E. Leach, H. N. Pedrosa, L. J. Carlson and T. D. Krauss, "Fluorescence from Isolated Carbon Nanotubes in Cross-linked Micelles," Chem. Mater. 21, 436-438 (2009).
  62. R. Priefer, K. E. Leach, T. D. Krauss, J. R. Drapo, M. L. Ingalsbe, M. A. van Dongen, J. C. Cadwalader, M. A. Baumler, and M. S. Pinto, "Multilayer Film Preparation of PVPh from Aqueous Media," Surf. Coat. Technol. 202, 6109-6112 (2008).
  63. R. Haggenmueller, S. S. Rahatekar, J. A. Fagan, J. Chun, M. L. Becker, R. R. Naik, T. Krauss, L. Carlson, J. Kadla, P. Trulove, D. Fox, Z. Fang, S. Kelley, and J. W. Gilman, "A Comparison of Quality of Dispersion of Single Wall Carbon Nanotubes using Different Surfactants and Biomolecules," Langmuir 24, 5070–5078 (2008).
  64. C. M. Evans, L. Guo, J. J. Peterson, S. Maccagnano, and T. D. Krauss, "Ultra-bright PbSe Magic Sized Clusters," Nano Lett. 8, 2896-2899 (2008).
  65. A. A. Ensign, I. Jo, I. Yildirim, T. D. Krauss, and K. L. Bren, "Zinc Porphyrin: A Fluorescent Acceptor in Studies of Zn-cytochrome c Unfolding by Fluorescence Resonance Energy Transfer," Proc. Natl. Acad. Sci. USA 105, 10779-10784 (2008).
  66. Z. Yu, M. Hahn, J. Calcines, T. D. Krauss, E. Alldredge, and J. Silcox, "Small-angle Rotation in Individual Colloidal CdSe Quantum Rods," ACS Nano 2, 1179-1188 (2008).
  67. M. A. Hahn, P. C. Keng, and T. D. Krauss, "Flow Cytometric Analysis to Detect Pathogens in Bacterial Cell Mixtures using Semiconductor Quantum Dots," Anal. Chem, 80, 864-872 (2008).
  68. L. J. Carlson and T. D. Krauss, "Photophysics of Individual Single Walled Carbon Nanotubes," Acc. Chem. Res. 41, 235-243 (2008).
  69. L. Carlson, S. Maccagnano, J. Silcox, M. Zheng, and T. D. Krauss, "Fluorescence Efficiency of Individual Carbon Nanotubes," Nano Lett. 7, 3698-3703 (2007).
  70. J. J. Peterson, L. Huang, C. Delerue, G. Allan, and T. D. Krauss, "Uncovering Forbidden Optical Transitions in PbSe Nanocrystals," Nano Lett. 7, 3827-3831 (2007).
  71. C. M. Strohsahl, H. Du, T. D. Krauss, and B. L. Miller, " Identification of high-stringency DNA hairpin probes by partial gene folding," Biosen. Bioelectron. 23, 233-240 (2007).
  72. C. M. Strohsahl, B. L. Miller, and T. D. Krauss," Preparation and use of metal surface-immobilized DNA hairpins for the detection of oligonucleotides," Nature Protocols 2, 2105-2110 (2007).
  73. T. D. Krauss, "Laser Technology: Less Excitement for More Gain," Nature 447, 385-386 (2007). (Invited News and Views)
  74. H. Liu, M. Z. Yates, H. Du, and T. D. Krauss, "Microencapsulation of Fluorescent Quantum Dots for Biological Labeling," Chem. Mater. 19, 2930-2936 (2007).
  75. H. N. Pedrosa and T. D. Krauss, "Single Walled Carbon Nanotube Fluorescence Spectroscopy," Revista Investigación y Ciencia 357, 39-40 (2006).
  76. T. D. Krauss, "Quantum Rods: Not so cool after all," Nature Phys.2, 513-514 (2006). (Invited News and Views)
  77. J. J. Peterson and T. D. Krauss, "Photobrightening and photodarkening in PbS quantum dots," Phys. Chem. Chem. Phys. 8, 3851-3856 (2006).
  78. L. Guo, X. Teng, H. Yang, T. D. Krauss, C. B. Poitras, and M. Lipson, "Energy transfer between colloidal semiconductor quantum dots in an optical microcavity," Appl. Phys. Lett. 89, 061104 (2006).
  79. J. J. Peterson and T. D. Krauss, "Fluorescence Spectroscopy of Single Lead Sulfide Quantum Dots," Nano Lett. 6, 510-514 (2006).
  80. Z. Wang, H. N. Pedrosa, T. D. Krauss, and L. J. Rothberg, "Determination of the exciton binding energy in single-walled carbon nanotubes," Phys. Rev. Lett 96, 047403 (2006). (Related comment PRL 98, 019702 (2007))
  81. L. Huang and T. D. Krauss, "Quantized Bimolecular Auger Recombination of Excitons in Single-Walled Carbon Nanotubes," Phys. Rev. Lett 96, 057407 (2006).
  82. J. M. Harbold, H. Du, T. D. Krauss, K.-S. Cho, C. B. Murray, and F. W. Wise, "Time-Resolved Intraband Relaxation of Strongly-Confined Electrons and Holes in Colloidal PbSe Nanocrystals," Phys. Rev. B 72, 195312 (2005).
  83. C. M. Strohsahl, H. Du, B. L. Miller and T. D. Krauss, "Towards single-spot multianalyte molecular beacon biosensors," Talanta 67, 479-485 (2005). (Invited)
  84. H. Du, C. M. Strohsahl, J. Camera, B. L. Miller, and T. D. Krauss, "Sensitivity and Specificity of Metal Surface Immobilized Molecular Beacon Biosensors," J. Am. Chem. Soc. 127, 7932-7940 (2005).
  85. Z. Yu, L. Guo, H. Du, T. D. Krauss, and J. Silcox, "Shell distribution on colloidal CdSe/ZnS quantum dots," Nano Lett. 5, 565-570 (2005).
  86. M. A. Hahn, J. Tabb and T. D. Krauss, "Detection of Single Bacterial Pathogens with Semiconductor Quantum Dots," Anal. Chem. 77, 4861-4869 (2005).
  87. A. Hartschuh, H. N. Pedrosa, J. Peterson, L. Huang, P. Anger, H. Qian, A. J. Meixner, M. Steiner, L. Novotny, and T. D. Krauss, "Single carbon nanotube optical spectroscopy," ChemPhysChem, 6, 577-582 (2005). (Invited minireview)
  88. Z. Yu, M. Hahn, J. Calcines, T. D. Krauss and J. Silcox,"Study of the internal structure of individual CdSe quantum rods using electron nanodiffraction," Appl. Phys. Lett., 86, 013101 (2005).
  89. R. Krishnan, Q. Xie, J. Kulik, X. D. Wang, S. Lu, M. Molinari, Y. Gao, T. D. Krauss and P. M. Fauchet, "Effect of oxidation on charge localization and transport in a single layer of silicon nanocrystals," J. Appl. Phys. 96, 654-660 (2004).
  90. L. Huang, H. N. Pedrosa, and T. D. Krauss, "Ultrafast ground state recovery of single-walled carbon nanotubes," Phys. Rev. Lett 93, 017403 (2004).
  91. R. Krishnan, M. A. Hahn, Z. Yu, M. Thomas, J. Silcox, P. M. Fauchet, and T. D. Krauss, "Polarization surface-charge density of single semiconductor quantum rods," Phys. Rev. Lett. 92, 216803 (2004).
  92. A. Hartusch, H. N. Pedrosa, L. Novotny, and T. D. Krauss, " Simultaneous Fluorescence and Raman Scattering from Individual Single-Walled Carbon Nanotubes," Science, 301, 1354-1356 (2003).
  93. Z. Wang, S. Pan, T. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single molecule Raman spectroscopy," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003).
  94. C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, "Photoluminescence enhancement of colloidal semiconductor quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003).
  95. H. Du, B. L. Miller, and T. D. Krauss, "Hybridization-based unquenching of DNA hairpins on Au surfaces: prototypical “molecular beacon” biosensors," J. Am. Chem. Soc. 125, 4012-4013 (2003).
  96. H. Du, C. Chen, T. D. Krauss, J. Harbold, F. W. Wise, M. Thomas, and J. Silcox, “Optical Properties of Colloidal PbSe nanocrystals,” Nano Lett. 2, 1321-1326 (2002).
  97. J. M. Haremza, M. A. Hahn, T. D. Krauss, S. Chen and J. Calcines, “Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes,” Nano Lett. 2, 1253-1258 (2002).

Publications from Prior to Rochester

  1. T. D. Krauss, S. O’Brien, and L. E. Brus, “Charge and photoionization properties of single semiconductor nanocrystals,” J. Phys. Chem. B, 105, 1725-1733 (2001).
  2. J. Jiang, T. D. Krauss, and L. E. Brus, “Electrostatic force microscopy characterization of trioctylphosphine oxide self-assembled monolayers on graphite,” J. Phys. Chem. B 104, 11936-11941 (2000).
  3. T. D. Krauss and L. E. Brus, “Electronic properties of single semiconductor nanocrystals: optical and electrostatic force microscopy measurements,” Mat. Sci. Eng. B-Solid 69-70, 289-294 (2000).
  4. T. D. Krauss and L. E. Brus, “Charge, polarizability, and photoionization of single Semiconductor Nanocrystals,” Phys. Rev. Lett. 83, 4840-4843 (1999).
  5. J. M. Fox, T. J. Katz, S. V. Elshocht, T. Verbiest, M. Kauranen, A. Persoons, T. Krauss, and L. Brus, “Synthesis, self-association, and nonlinear optical properties of conjugated helical metal phthalocyanines,” J. Am. Chem. Soc. 121, 3453-3459 (1999).
  6. T. D. Krauss and F. W. Wise, “Coherent acoustic phonons in a semiconductor quantum dot,” Phys. Rev. Lett. 79, 5102-5105 (1997).
  7. A. Lipovskii, E. Kolobkova, V. Petrikov, I. Kang, A. Olkhovets, T. Krauss, M. Thomas, J. Silcox, F. Wise, Q. Shen, and S. Kycia, “Synthesis and characterization of PbSe quantum dots in phosphate glass,” Appl. Phys. Lett. 71, 3406-3408 (1997).
  8. I. Kang, T. Krauss and F. Wise, “Sensitive measurement of nonlinear refraction and two-photon absorption by spectrally-resolved two-beam coupling,” Opt. Lett. 22, 1077-1079 (1997).
  9. T. D. Krauss and F. W. Wise, “Raman-scattering study of exciton-phonon coupling in PbS nanocrystals,” Phys. Rev. B 55, 9860-9865 (1997).
  10. I. Kang, S. Smolorz, T. Krauss, F. Wise, B. G. Aitken and N. F. Borelli, “Time-domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 12641-12644 (1996).
  11. K.C. Bretz, Y. C. Lee, T. D. Krauss, F. W. Wise, and W. H. Sachse, “Picosecond acoustics for the characterization of submicron polymeric films,” Ultrasonics 34, 513-515 (1996).
  12. T. D. Krauss, F. W. Wise, and D. B. Tanner, “Observation of coupled vibrational modes of a semiconductor nanocrystal,” Phys. Rev. Lett. 76, 1376-1379 (1996).
  13. I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borelli, “Femtosecond measurement of enhanced optical nonlinearities in sulfide glasses and heavy-metal doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053-2059 (1995).
  14. T. D. Krauss, J. K. Ranka, F. W. Wise, and A. L. Gaeta, “Measurements of the tensor properties of third-order nonlinearities in wide-gap semiconductors,” Opt. Lett. 20, 1110-1112 (1995).
  15. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS, ” Appl. Phys. Lett. 65, 1739-1741 (1994).